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LE'ITER TO THE EDITOR 

Eigenvalues of the Schrodinger equation with a Gaussian 
potential 

G Stephenson 
Department of Mathematics, Imperial College, London, UK 

Received 6 October 1977 

Abstract. Eigenvalues of the three-dimensional Schrodinger equation with a radial Gaus- 
sian potential are obtained using the Liouville-Green uniform asymptotic method. The 
results are compared with those obtained by direct integration of the Schrodinger equa- 
tion. 

In some recent work (see Rowan and Stephenson 1976 and Rowan 1977) uniform 
asymptotic methods and the Liouville-Green technique have been used to obtain 
solutions of certain differential equations which arise in the theory of black holes. This 
technique is now applied to the calculation of the eigenvalues of the three-dimen- 
sional Schrodinger equation with an attractive radial Gaussian potential, a problem 
relevant to the theory of nucleon-nucleon scattering (see, for example, Buck 1977). 

In a suitable non-dimensional form (2m = A = 1) the radial Schrodinger equation 
with V = -A edr2 may be written as 

where A is the depth of the Gaussian potential, Z = 0, 1 , 2 , 3 ,  . . . , and E is the energy. 
The boundary conditions are +(O) = ~ ( o o )  = 0. 

We now make the transformations r = r ( 0 ,  G = (f)1'2$ in (l) ,  where 6' = dt/dr, to 
obtain the equation 

For convenience in what follows we write 

Now for certain values of E there will be two zeros of f ( r ) .  Consequently if, by a 
suitable choice of 5, g(r) can be shown to be a small bounded slowly varying function 
which, under certain conditions, can be neglected in (2), then the resulting ap- 
proximate form of (2) when f ( r )  has two zeros will be an equation with two turning 
points. Accordingly we try to choose 6 in such a way as to take (2) (with g(r) omitted) 
into the standard two-turning-point equation: 

d2G/dt2 = (28' - h )G, (4) 
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where A is a parameter. This is the Weber equation whose solutions are the parabolic 
cylinder functions. However, the obvious choice of ['2(&2 - A )  = f ( r )  leads, after some 
lengthy calculations, to a form of g(r) which is divergent at r = 0. This singularity may 
be removed by a judicious re-grouping of terms so that part of the singularity in f ( r )  at 
r = 0 is used to cancel out the singularity in g(r) at r = 0. This can be done by writing 
(2) in the form 

1 2" d2 G [ ( -E-A e - " + ~ ) - + g ( r ) - - ] G ,  1 
dS r 4;' 4r yt2 

where 6 is now defined by the equation 

y t 2 ( i y 2 - ~ ) =  -E-A e-r2+[(I+h)2/r2]. (6) 

We note that the re-grouping of terms to produce ( 5 )  effectively replaces I(1+ 1) by 
(I +$)', which is the Langer correction (see Langer 1937). The origin of this correction 
lies therefore in the correct removal of the singularity in g(r) at r = 0. 

Owing to the complexity of the relation between 6 and r the behaviour of the 
function g(r) - 1 /4r25" is difficult to analyse analytically, but specific numerical cal- 
culations indicate that it is a bounded slowly varying function over the whole range 
0 4 r < 00. In accordance with the Liouville-Green approximation this function will 
now be neglected in ( 5 )  in what follows. 

Now from (6) we find by integration that 
1/2 

i a - 2 A  2 In I S + m 1 = 2  I (--€?-A r e-.') dr, (7) 

whence it follows that as r + 0,s + - 00, and as r + 00,s + 00. Furthermore from (6) we 
see that at the turning points rl and r2 (these being the zeros of -E -A e-r2 + 
( I  +&)2/r2) ,  ,$ = f ~ J A .  In the range between these two points where rl . < r -= . r2, we 
have S2 C 4A and hence (6) integrates to give 

(8) 
L m + 2 A s i n - ' ( $ ) = 2  J ( E + A ~ - ~ ~ - - . ~ )  (1+$)2 ll2 dr 
2 

from which we have 

r2 (1  +&)2 
21rA = 2  J ( E + A  e W r ' - T )  dr. 

r1 
(9) 

Now bounded polynomial solutions of the Weber equation (4) which satisfy the 
boundary conditions G( - 00) = G(m) = 0 (corresponding to $(O) = +(a) = 0) exist 
only if 

A=n+$,  (10) 
where n is zero or a positive integer. 

Hence from (9) and (10) we finally have 

where rl(E, I), r2(E, I) are the zeros of the expression under the square root sign. This 
result is precisely the Bohr-Sommerfeld quantisation formula with / ( I +  1) replaced by 
( I  +$)'. 
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Other work on two-turning-point problems has been discussed by Olver (1974) 
and Berry and Mount (1972) mainly using matched Airy function solutions at each 
turning point, a complication avoided by the present approach. Although in principle, 
as shown by Olver, upper bounds on the errors involved in all this uniform asymptotic 
work are known analytically, in practice these prove to be far too crude or impossible 
to obtain over the whole range analytically due to the complicated relationship 
between 6 and r. An estimation therefore of the error involved in neglecting the term 
g ( r ) -  1/4r2(" in (5) is difficult to obtain, but numerical calculations in particular cases 
indicate that the neglected term is small in comparison to the terms retained in (3, the 
accuracy increasing with the magnitude of A. 

The eignevalues for the case where the potential well has depth A = 400 have been 
computed using (11). These values are compared in table 1 with some unpublished 
results (in italics) obtained by Dr B Buck of the Department of Theoretical Physics, 
University of Oxford, by direct integration of the Schrodinger equation. Close 
agreement exists between these two sets of values for the range of ( n , l )  values 
considered. 

Table 1. 

I O  1 2 3 4 5 6 7 8 9 
n 

341.6 304.2 267.9 232.6 198.5 165.7 134.1 103.9 74.9 47.6 
341.9 304.5 268.1 232.9 198.8 165.9 134.3 104.1 75.2 47.9 

269.4 235.2 202.2 170.4 139.9 110.7 83.0 56.9 32.6 10.2 
269.7 235.5 202.4 170.6 140.1 111.0 83.3 57.2 32.8 10.5 

203.7 173.0 143.6 115.5 88.9 63.9 40.7 19.5 - - 
204.0 173.3 143.8 115.8 89.2 64.2 41.0 19.8 - - 

145.1 118.1 92.6 68.7 46.6 26.5 8.8 - - - 
145.4 118.4 92.9 69.0 46.9 26.8 9.1 - - - 

94.2 71.4 50.3 31.3 14.6 - - - - - 
94.5 71.6 50.6 31.5 14.9 - - - - - 

I am grateful to Robin Hughes of the Department of Physics, Imperial College, for 
carrying out the computation of the eigenvalues, and to Dr B Buck of the Department 
of Theoretical Physics, University of Oxford, for permission to publish his compu- 
tations for comparison purposes. 
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I am also grateful to David Rowan for useful discussions, and to Professor 
R J Elliott for the hospitality shown to me during my stay in the Department of 
Theoretical Physics, University of Oxford, where this work was started. 
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